Example materials#
Disclaimer: Most of these material models are appropriate for teaching/learning purposes. Research-level models must be vetted for the specific application.
Water Ice#
The properties of ice depend on the grain structure, temperature and strain rates. Nominal values for the Young’s modulus \(E=9\) GPa and poisson’s ratio \(\nu=0.32\) [Petrovic, 2003]. The corresponding shear modulus \(G = \frac{E}{2(1+\nu)} = 3.38\) GPa. Cold ice under uniaxial strain has a Hugoniot Elastic Limit of 0.62 GPa [Stewart and Ahrens, 2005]. The average tensile strength for ice is 1.43 MPa at low strain rates [Petrovic, 2003]; the dynamic spall strength of ice is about 17 MPa [Lange and Ahrens, 1983]. The relationship between the Hugoniot Elastic Limit and the von Mises yield stress is:
\(\sigma_{vm} = \frac{(1-2\nu) \sigma_{HEL}}{(1-\nu)} = 0.328\) GPa.
Bulk modulus of ice is about 10 GPa at 150 K [Neumeier, 2018].
There are multiple options for the equation of state for H2O, each with various strengths and weaknesses and should be chosen based on the desired application.
Example configuration file entry (mks):
mat1:
str:
type : 'VM'
gmod : 3.38E9
ys : 0.328E9
kmod : 10.0E9
cs0 : 3305.0
frac:
pfrac : 17.0E6
nrhomin : 0.9
Aluminum 6061#
Al 6061 data from https://www.matweb.com/.
mat1:
str:
type : 'VM'
gmod : 26.0E9
ys : 207.0E6
frac:
pfrac : 276.0E6
nrhomin : 0.9
Copper#
Annealed copper shear modulus (46 GPa) and Poisson’s ratio (0.343) from https://www.matweb.com/.
Hugoniot elastic limit and tensile strength are dependence on temperature, strain rate, propagation distance, etc. [Zaretsky and Kanel, 2013]. These are nominal values for demonstration purposes only. For an HEL of 0.2 GPa, \(\sigma_{vm}=0.0956\) GPa.
Dynamic spall strength from https://aip.scitation.org/doi/full/10.1063/1.3607294
mat1:
str:
type : 'VM'
gmod : 46.0E9
ys : 0.0956E9
frac:
pfrac : 1.35E9
nrhomin : 0.9
Stainless steel 304#
Most parameters from [Duffy and Ahrens, 1997]. \(\nu_0=0.29\).
\(c_v=502.416\) J/K/kg from https://www.engineersedge.com/materials/specific_heat_capacity_of_metals_13259.htm
Need tensile strength; this is a guess.
All values mks.
mat1:
eos:
name : 'Steel 304'
type : 'MGR'
rhoref : 7870.0
c0 : 4580.0
s1 : 1.49
gamma0 : 2.2
cv : 502.416
str:
type : 'VM'
gmod : 78.0E9
ys : 0.2E9
frac:
pfrac : 1.0E9
nrhomin : 0.9
Quartz#
alpha quartz#
\(\alpha\)-quartz is not well represented by a simple material model. These values provide a coarse representation for teaching.
Wackerle (1962) HEL strongly dependent on orientation. Nominal \(\sigma_{HEL}=10\) GPa.
\(\nu=0.08\) https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JB014606
\(\sigma_{vm} = \frac{(1-2\nu) \sigma_{HEL}}{(1-\nu)} = 9.3\) GPa.
Shear modulus http://www-odp.tamu.edu/publications/204_SR/103/103_t1.htm https://link.springer.com/article/10.1007/s00269-014-0711-z
Dynamic tensile strength approximately 1 GPa https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022GL100468
mat1:
eos:
name : 'Quartz'
type : 'MGR'
rhoref : 2648.0
c0 : 620.0
s1 : 1.74
gamma0 : 0.84
cv : 740.0
str:
type : 'VM'
gmod : 44.4E9
ys : 9.3E9
frac:
pfrac : 1.0E9
nrhomin: 0.9
Fused quartz#
The following US-up relationship for fused silica shock-compressed to 44–72 GPa was determined using the results from this study: US = 0.62(7) + 1.74(2)uP. [Berryman et al., 2019]
Poisson’s ratio is 0.17 https://www.heraeus.com/en/hca/fused_silica_quartz_knowledge_base_1/properties_1/properties_hca.html#tabs-608478-6
Wackerle 1962, FS HEL about 9.5 GPa. Ys = (1-2*.17)/(1-.17)*9.5E9; assume spall is Ys/10.
Gamma0 from SESAME. https://sgp.fas.org/othergov/doe/lanl/lib-www/la-pubs/00296704.pdf
Shear modulus and heat capacity from www.accuratus.com
mat1:
eos:
name : 'Fused Silica'
type : 'MGR'
rhoref : 2201.0
c0 : 620.0
s1 : 1.74
gamma0 : 0.65
cv : 740.0
str:
type : 'VM'
gmod : 31.0E9
ys : 7.55E9
frac:
pfrac : 0.755E9
nrhomin : 0.9
Forsterite#
A tabular EOS is available from ststewart/aneos-forsterite-2019
Olivine/Dunite#
These olivine parameters were developed in [Marinova et al., 2011].
mat1:
eos:
name : 'Olivine'
type : 'TIL'
rhoref : 3500.0
E0 : 550.0E6
EIV : 4.5E6
ECV : 14.5E6
AA : 131.0E9
BB : 49.0E9
a : 0.5
b : 1.4
alpha : 5.0
beta : 5.0
cv : 860.0
Lithium Flouride (LiF)#
Hugoniot from [Hawreliak et al., 2023]. Grueneisen parameter from [Duffy and Ahrens, 1997]. Heat capacity from Wikipedia.
Poisson’s ratio is 0.27.
mat1:
eos:
name : 'LiF'
type : 'MGR'
rhoref : 2640.0
c0 : 5144.0
s1 : 1.355
s2 : 0.0
gamma0 : 1.6
cv : 1507.0
str:
type : 'VM'
gmod : 55.14E9
ys : 0.2E9
frac:
pfrac : 0.02E9
nrhomin : 0.9
https://www.crystran.co.uk/optical-materials/lithium-fluoride-lif
Specific Heat Capacity : 1562 J Kg-1 K-1 Dielectric Constant : 0.1 Youngs Modulus (E) : 64.97 GPa (2) Shear Modulus (G) : 55.14 GPa (2) Bulk Modulus (K) : 62.03 GPa (2)